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Abstract 
Plant growth promoting rhizobacteria (PGPR), which promote plant growth, are closely associate with various plants around 

rhizosphre as well in the plant tissues as endophytes. The present review focus the establishment process of plant associated 

bacterial diversity and the bacterial genera associated with their plant species. Pseudomonas sp., Serratia sp., Azotobacter sp., 

Klebsiella sp., Burkholderia sp., Alkaligenes sp. Enterobacter sp., Bacillus polymyxa, Gluconacetobacter sp. Azoarcus sp., 

Paenibacillus sp., Brevibacterium halotolerans and Pseudomonas putida have been predominantly reported as PGPR. 
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Introduction 

Rhizosphere is a narrow zone of soil surrounding the root is 

which is directly influenced by the root system. This zone 

is rich in nutrients in comparison to the bulk soil, due to the 

accumulation of a variety of organic compounds released 

from roots by exudation, secretion, and deposition (Ligaba 

et al., 2004). It facilitates niche for rhizospheric diazotrophs 

belonging to different genera due to rich nutrient 

availability. Kloepper and Schroth (1978) introduced the 

term ‘rhizobacteria’ to the soil bacterial community that 

competitively colonized plant roots and stimulated growth 

and thereby reducing the incidence of plant diseases. 

Kloepper and Schroth (1981) termed these beneficial 

rhizobacteria as plant growth-promoting rhizobacteria 

(PGPR). Endophytic bacteria includes a wide range of soil 

bacterial genera such as Allorhizobium, Azorhizobium, 

Bradyrhizobium, Mesorhizobium and Rhizobium of the 

family Rhizobiaceae that generally invades the root systems 

in crop plants to form nodules (Wang and Martinez-Romero 

2000) and stimulates growth either directly or indirectly. 

This group of rhizobacteria is mostly Gram-negative and 

rod-shaped with a lower proportion being Gram-positive 

rods, cocci and pleomorphic. Examples can also be cited 

from Allorhizobium undicola (de Lajudie et al., 1998), 

Azorhizobium caulinodans (Dreyfus et al., 1988), To 

determine the diversity of non-culturable diazotrophs, 

phylogenetic studies of nitrogen-fixing bacteria associated 

with rice roots using PCR primer designed to amplify 

fragments from nif genes have been carried out (Ueda et al., 

1995a,b). The genetic diversity of putative diazotrophic 

bacteria is evaluated using amplified ribosomal DNA 

restriction analysis (ARDRA), rep-PCR genomic 

fingerprinting and small subunit (SSU) ribosomal DNA 

(rDNA) sequencing etc. (Grange and Hungria, 2004). The 

present review focus on the process of establishment of 

plant associate microbial diversity and various microbes 

which gives benefit to the plants due to their plant growth 

promoting characters. 

Establishment of Plant-Associated Microbial 

Diversity 

The plant-soil microbial flow that we have depicted are 

reliant on and create spatial structure in the microbial 

community. At the mainland scale, the accomplishment of 

intrusive species frequently relies on upon discharge from 

microbial foes (Callaway et al., 2004; Reinhart et al., 2003). 

Inside bacterial community, constructive plant-soil 

microbial criticism strengthens spatial detachment of 

bacterial community (Molofsky and Bever, 2002), and 

contrary input brings about plant substitution, which 

requires recolonization of locally novel roots. At the littlest 

scale inside the root arrangement of an individual plant, the 

interaction of plant guard, plant portion, and microbial 

rivalry decides the course of inputs. At each of these scales, 

a few aspects of microbial environment and development 

decide the capacity of earlier or new microbial variations to 

set up themselves. It is essential to describe the significance 

of dormancy and capacity impacts, dispersal, flat quality 

exchange, and mutation in this establishment procedure. 

Dormancy  

All soil microorganisms, extending from oomycetes, 

nematodes, AM parasites, to microscopic organisms, can 

enter a lethargic state under unpleasant or unsatisfactory 

conditions (Jones and Lennon, 2010; Sussman and Douthit, 

1973). Dormancy permits organisms to continue amid 

unfavorable conditions, expanding nearby scalemicrobial 

differences. Reviews appraise that more than 80% of the 

bacterial cells in the soil are dormant (Lennon and Jones, 

2011). Besides, the group of physiologically dynamic 

microscopic organisms inside the soil are unmistakable 

from those that are dormant (Lennon and Jones, 2011). 

Comparable refinements are likely in different gatherings, 

for example, AM fungi (Pringle and Bever, 2002). 

Therefore, evaluations of microbial synthesis utilizing 

standard DNA extractions from soil may not give measures 

that mirror the dynamic players in the plant-organism 

collaboration, conceivably clouding field endeavors to 

recognize the agents of microbial inputs. 
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For plant-related microorganisms, shifts into and out of 

dormancy might be dictated by the accessibility of 

appropriate plants. Dormancy can be activated by asset 

hardship, change in supplement organization of the soil 

(expanded carbon or phosphorus), or other natural 

conditions (e.g. pH, water content), all components that can 

be influenced by plants. Collaborations with different 

individuals from the microbial community likewise animate 

microbial dormancy, as competitors may drain assets or 

hinder development through antibiotic generation (D¨orr et 

al., 2010; Lewis, 2007). The environment and advancement 

of microbial dormancy are likewise affected by predation in 

the dormant state (Jones and Lennon, 2010), which can be 

huge for gatherings with extensive, consumable dormant 

structures, for example, spores of AM fungi. 

Dispersal.  

On the off chance that plant-associated microorganisms are 

not present when the plant starts to develop, then dispersal 

can introduce new microorganisms. Wind, water, animals, 

and insects are significant dispersers of soil microorganisms 

(71). Over littler scales, soil microorganisms can encourage 

the spread of each other (Warmink et al., 2011). Moreover, 

organisms have developed various methodologies to sense 

changes in the earth and move as needs be. In the 

rhizosphere, plant-exuded resources, for example, 

carbohydrates, amino acids, phenolics, and inorganic 

particles are open to the encompassing microflora, and 

microorganisms will chemotax toward these root-related 

exudates (Currier and Strobel, 1976). For instance rhizobia 

chemotax toward vegetable discharged flavonoids 

preceding the improvement of symbiotic nodules (Jones et 

al., 2007). 

Horizontal gene transfer  

Horizontal gene transfer is uncontrolled in the microbial 

world, both inside and between species, happening at such 

high frequencies that the meaning of an animal varieties can 

be obscured (Ochman et al., 2005). A solitary conjugation 

occasion between two types of microscopic organisms can 

change the total genetic material by more than 10% (Blanca-

Ord ´o ˜ nez et al., 2010; Chen et al., 2002).Numerous 

bacterial virulence determinants are connected with mobile 

genetic materials (Hacker and Kaper, 2000; Schmidt and 

Hensel, 2004), as are genes for symbiotic interaction and the 

capacity to overcome or even use plant exudates and guards. 

Indeed, facultative symbionts have the best convergence of 

mobile components in their genome, recommending that 

level quality gene transfer can be especially vital to this 

group (Newton and Bordenstein, 2011). Conjugation, 

transduction, or change can change over free living 

microorganisms to plant pathogens or symbionts and 

produce novel mixes of specificity factors and harmfulness 

or mutualist functions (Cervantes et al., 2011; Yang et al., 

1993). Genes for nitrogen fixation by the plant symbionts 

Sinorhizobium meliloti and Rhizobium etli are on mobile 

plasmids (Moriguchi et al., 2001; Truchet et al., 1984), 

similar to the genes encoding the effectors that decide host 

specificity of the pathogen Pseudomonas syringae 

(Guttman and Greenberg, 2001; Jackson et al., 1999). 

Genetic transfers can be imperative in soil fungi also. There 

is solid proof that the pathogenicity genes of Nectria 

haematococca, the parasitic causative agent of pea foot rot 

infection, were on a level plane procured (Liu et al., 2003). 

Conjugation of plant-related plasmids can be incited by 

vicinity to hosts, which improves the probability that 

recombinants coming about because of horizontal gene 

transfer will be critical at shorter time allotments (Fuqua and 

Winans, 1994). 

Mutation 

Mutation is another vital compel creating microbial 

variations that can interact diversely with plant host. 

Mutations influencing virulence-associated genes have 

noteworthy results for the advancement of destructiveness 

in a wide evolution of pathogens (McCann et al., 2008; 

Sokurenko et al., 1999). One clear focus of choice are 

mutants that can evade host protections (Pitman et al., 2005; 

Zhou et al., 2009), however other conceivable targets 

incorporate mutations that impact the wellness of the 

pathogen in the rhizosphere, for example, those presenting 

the capacity to catabolize plant-created resources (Lapointe 

et al., 1992). Comparative impacts are likely in mutualistic 

plant-organism interaction. For instance, succession variety 

in the gesture quality of R. etli decides the host range of this 

mutualist (Schultze et al., 1992). In spite of the fact that 

mutations happen at low rates, microbial populace sizes on 

plant roots are possibly vast. Thus, mutation consolidated 

with gene exchange may shape the evolution of host-

pathogen interaction (Ma et al., 2006). 

Relative importance of modes of microbe (re)introduction  

At the scale of a single root, plant defence reaction and 

particular assignment can change at fast timescales—in as 

short as hours (Jones and Dangl, 2006; Kiers et al., 2003). 

At these little spatial and temporal scales, new variations are 

probably going to be reintroduced by local dispersal and 

reactivation of dormant cells. Over the lifetime of an 

individual plant, these nearby procedures are probably 

going to be supplemented by developmental formation of 

new variations (Pitman et al., 2005). Inside agrobacteria, for 

instance, transformation may make freeloading variations 

that could stifle destructive sorts (Platt et al., 2012). Over 

huge spatial and worldly scales, advancement of nearby 

inhabitant microbial populaces can defeat the novel defence 

of introduced plant species. This may have added to the 

expanded negative feedbacks amassed over several years 

taking after the attack of Cerastium alpinum in New 

Zealand (Diez et al., 2010). Diagrammatic representation of 

plant–soil–microbial interactions in the rhizosphere is 

shown in Fig. 1. 
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Fig. 1: Plant–soil–microbial interactions in the rhizosphere (Adapted from Jing et al., 2007). 

Plant Associated Bacterial Diversity  

Comparative phylogenetic analysis of the DNA sequences 

of cloned 16S rRNA genes has shown that members of four 

major phylogenetic groups are ubiquitous to almost all soil 

types: class α-proteobacteria and phyla Actinobacteria, 

Acidobacteria and Verrucomicrobia. These four groups are 

represented in >75% of 16S rRNA gene clone library studies 

of soil bacterial communities (Hugenholtz et al., 1998). 

Other classes of the phylum Proteobacteria and phyla 

Firmicutes and Planctomycetes are detected in 25–75% of 

studies (Hugenholtz et al., 1998).  

Phyla Proteobacteria, Cytophagales, Actinobacteria and 

Firmicutes are well represented by cultivated organisms and 

these four phyla account for 90% of all cultivated bacteria 

characterized by 16S rRNA sequences from cultivated 

organisms in ARB database (Hugenholtz et al., 1998). 

Some phyla which are revealed by clonal analysis, such as 

Acidobacteria and Verrucomicrobia, are poorly represented 

by sequences from cultivated organisms. For example, 

Acidobacteria appear to be numerically dominant and active 

members of most soils form up to 52% of 16S rRNA gene 

sequences in clone libraries (Felske et al., 2000). However, 

only few isolates have been obtained from soil (Sait et al., 

2002). The Proteobacteria not only contain a large number 

of cultivated species but also are well represented by cloned 

16S rRNA gene sequences (Dunbar et al., 1999; Saul et al., 

2005).  

With the advances in PCR-based techniques, numerous 

rDNA- based strategies have been developed in recent 

years, which provide efficient tool for studying microbial 

community and their relationship. Currently most 

investigators analyse rDNA with methods such as 

denaturing gradient gel electrophoresis (DGGE) (Reiter et 

al. 2003), temperature gradient gel electrophoresis (Heuer 

et al. 1997), terminal random fragment length 

polymorphism analysis (Liu et al., 1997), ribosomal 

intergenic spacer analysis (Borneman and Triplett, 1997) 

and oligonucleotide fingerprinting of rRNA genes 

(Valinsky et al., 2002). The development of nifD and nifH 

specific primers has also proved very useful in screening 

diazotrophic strains (Stoltzfus et al., 1997; (Yanni et al., 

1997). 

Identification at strain level can be done by PCR 

fingerprinting. These methods are applied with cultured and 

non-culturable bacterial cells (avoiding DNA extraction) 

and combines convenient analysis with universal 
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applicability and the potential information (Ueda et al., 

1995b). Several workers are currently using oligonucleotide 

primers derived from eukaryotic consensus LINE sequence 

applied for PCR fingerprinting (Ueda et al., 1995a). The 

electrophoretically separated band patterns were highly 

reproducible and strain specific PCR assay provides easy 

detection of bacteria without prior cultivation. Direct 

sequencing of PCR products may even allow identification 

of the uncultivated or cultivated strain by phylogenetic 

analysis of partial SSU (small sub-unit) rDNA sequences in 

environment (Ueda et al., 1995a; Eckert et al., 2001). 

Identification of rhizospheric bacteria can also be obtained 

by development of specific probes. Two 16S rDNA-

targeting oligonucleotide probes were developed, which 

differentiate the new species from the other Azospirillum 

species by whole-cell fluorescence hybridization probes 

(Eckert et al., 2001). Analysis of the 16S-23S ribosomal 

DNA (rDNA) intergenic spacer (IGS) sequences allows 

intraspecies differentiation (Tan et al., 2001).  

The diversity within certain species of nitrogen-fixing soil 

bacteria including Azospirillum (Sevilla and Kennedy, 

1999), Herbaspirillum (Baldani et al. 1992) and Azoarcus 

sp. (Hurek and Reinhold-Hurek, 2003) has been already 

studied by using genomic finger printing like rep-PCR with 

primers directed to arbitrary or repetitive sequences. With 

multilocus enzymes electrophoresis (MLEE), RFLP and 

plasmid pattern, the variability of Brazilian and Mexican 

isolates of Acetobacter diazotrophicus was investigated and 

a limited genetic diversity was found (Sevilla and Kennedy, 

1999). The levels of genetic diversity in many species of 

bacteria may be related to their habitat.  

nifH gene, encoding iron protein of nitrogenase enzyme is 

one of the most functionally important and evolutionarily 

conserved gene. Since several diazotrophic bacteria are 

known to be associated with rice roots, nifH sequence 

analysis directly from rice root DNA or from bacteria 

growing in rhizosphere of rice can be highly useful for the 

phylogenetic study of diazotrophic bacteria. Analysis of 

nifH gene amplified directly from rice root has been utilized 

to study the genetic diversity of N2-fixing bacteria by the 

molecular evolutionary analysis of nifH sequences (Ueda et 

al., 1995a). The outline of the nifH tree has also been 

reported to be largely consistent with the 16S rRNA 

phylogeny (Ueda et al., 1995a). On the other hand, by 

nifHDK approaches, evidence was obtained for the first 

time that natural host range of Azoarcus sp. might extend to 

plants other than Kallar grass. From rice roots grown in 

Japan, Nif protein sequence was obtained by Ueda et al., 

(1995b) which could not be assigned to any known bacterial 

species or genus but for Azoarcus, nifH gene sequences. 

This indicates that Azoarcus sp. might naturally be 

colonizer of field grown rice, raising the question, if they fix 

N2 in rice rhizosphere. 

The lack of information about the diversity of bacteria 

specifically isolated from the rhizosphere of various plants 

needs to be filled up for our understanding of an important 

niche in the microbial ecology of grasses such as rice 

(Ladha and Reddy, 2000). Brief account of some of the 

typical rhizospheric and putative rhizospheric diazotrophs 

that have been found to be naturally present in the 

rhizosphere of the graminaceous plants like rice, sugarcane, 

wheat, kallar grass etc. is given below. 

Herbaspirillum was first reported by (Baldani et al. 1992) 

as a N2-fixing bacterium associated with the roots of rice, 

maize and sorghum. Herbaspirillum seropedicae and 

Herbaspirillum rubrisubalbicans (formerly known as 

Pseudomonas rubrisabalbicans) are the confirmed 

diazotrophic bacteria. Another diazotrophic species 

Herbaspirillum frisingens has been isolated from C-4 fibre 

plants (Kirchhof et al., 2001).  

Until now, this bacterium has been reported in 13 members 

of the graminaceae including sorghum, maize, sugarcane, 

rice and others, particularly within roots (Olivares et al., 

1996). The bacterium may colonize loosely (rhizoplane) or 

more intimately (endophyte) with the root and found more 

frequently in rhizosphere. It has been suggested that the 

Herbaspirillum sp. are translocated to the aerial parts of host 

plants through the transpiration stream (Pimentel et al., 

1991). 

Herbaspirillum is a gram negative, curved rod with polar 

flagellation and grows best on dicarboxylic acids, 

gluconate, glucose and mannitol, fixing N2 at a pH range of 

5.3 to 8 (Baldani et al., 1992; Ureta et al.,1995). 

Herbaspirillum sp. grow and fix N2 under relatively high 

PO2 (3%) compared with Azospirillum sp. (2%). H. 

seropedicae expresses nitrate reductase and is able to grow, 

but not fix N2, in the presence of fixed N (Reinhold-Hurek 

and Hurek, 1998). Several species of Herbaspirillum may 

show some phytopathogenic potential on sugarcane and 

sorghum (James et al., 1997; Olivares et al., 1997).  

The genus Sphingomonas comprises over 55 species, with 

the Sphingomonas paucimobilis identified as the type 

species (Yabuuchi et al., 1990). Recently, only one species, 

named Sphingomonas azotifigens has been isolated from 

rice rhizosphere and have been reported to fix nitrogen (Xie 

and Yokota, 2006). Sphingomonas is a gram negative, 

aerobic, straight rod, 0.5–1.0 X 1.0–3.0 mm in size and 

motile by means of peritrichous flagella. Nitrogen- fixing 

colonies are circular, smooth, convex, opaque and yellow–

orange on agar medium. The visible absorption spectrum of 

the acetone extract of the yellow pigment has two peaks at 

452 and 480 nm. Cells contain poly-β-hydroxybutyrate 

granules. Optimum temperature for growth is 25–37oC; 

growth is inhibited at 42oC and in 2.5% NaCl. Starch, 

aesculin and Tween 80 are hydrolysed but not chitin. 
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Catalase, oxidase, β -galactosidase, phosphatase and DNase 

are present but not indole or arginine dihydrolase.  

Azospirillum sp. is known to be the most efficient 

diazotrophic bacteria isolated from rhizosphere of various 

plants, such as A. zeae sp. Nov strain N6 and N7 have been 

isolated from rhizosphere of maize (Mehnaz et al., 2007), 

rice (Xie and Yokota, 2006, sorghum, and wheat (Baldani 

et al., 1993). Azospirillum sp. is motile and grows best in a 

semi-solid medium with formation of a pellicle, as their 

nitrogenase expression/activity is sensitive to PO2 above 

2%. The preferred C sources for all Azospirillum sp. are 

organic acids, such as malate and succinate. It is generally 

regarded as a rhizospheric bacterium and has often been 

reported to give best results upon inoculation to crop plants. 

Certain strains penetrate the roots suggesting that some 

strains of Azospirillum may also colonize within wheat 

tissues (Naiman et al., 2009). Till date a number of 

rhizospheric diazotrophic Azospirillum species including 

Azospirillum lipoferum, A. amazonense, A. halopreferens A. 

irakense and A. doebereinerae sp. nov have been reported 

(Khammas et al., 1989; Eckert et al., 2001). 

Pseudomonas sp., Serratia sp., Azotobacter sp., Klebsiella 

sp., Burkholderia sp., Alkaligenes sp. Enterobacter sp., 

Bacillus polymyxa, Gluconacetobacter sp. Azoarcus sp., 

Paenibacillus sp., Bacillus subtilis, B. licheniformis, B. 

pumilus, Brevibacte-rium halotolerans and Pseudomonas 

putida are plant associated bacteria reported by various 

research workers from different plants (Table 1).  

Table 1: Plant associated PGPR reported from various plants 

PGPR Host crops References 

Burkholderia sp. Rice Baldani et al. (2000) 

Azospirillum sp. Wheat Boddey et al. (1986) 

Gluconacetobacter sp. Sugarcane Boddey et al. (2001) 

Azospirillum sp. Maize Garcia de Salamone et al. (1996) 

Pseudomonas putida and P. fluorescens Hyoscyamus niger L Ghorbanpour et al. (2010) 

Pseudomonas sp. Groundnut Gupta et al. (2002) 

Bacillus amyloliquefaciens Bell pepper Herman et al. (2008) 

Azoarcus sp. Kallar grass Hurek et al. (2002) 

Enterobacter sp. Chickpea Hynes et al. (2008) 

Gluconacetobacter sp. Sorghum Isopi et al. (1995) 

Pseudomonas fluorescens Catharanthus roseus (L.) G. Don Jaleel et al. (2007) 

Pseudomonas fluorescens Catharanthus roseus (L.) G. Don Jaleel et al. (2009) 

Herbaspirillum sp. Sorghum James et al. (1997) 

Herbaspirillum sp. Rice James et al. (2002) 

Bacillus cereus MJ-1 Red pepper Joo et al. (2005) 

Pseudomonas sp. White clover Medicago Kempster et al. (2002) 

Bacillus subtilis G803 Pepper Kokalis-Burelle et al. (2002) 

Bacillus licheniformis Pepper Lucas et al. (2004) 

Azospirillum sp. Rice Malik et al. (1997) 

Azotobacter sp. Wheat Mrkovacki and Milic (2001) 

Bacillus amyloliquefaciens Tomato Murphy et al. (2000) 

Bacillus polymyxa Wheat Omar et al. (1996) 

Azotobacter sp. Maize Pandey et al. (1998) 

Pseudomonas fluorescens Tobacco Park and Kloepper (2000) 

Azospirillum brasilense Prunus cerasifera L. Russo et al. (2008) 

Paenibacillus polymyxa E681 Sesame Ryu et al. (2006) 

Bacillus subtilis Crocus sativus L Sharaf-Eldin et al. (2008) 

Pseudomonas aeruginosa Mung bean Siddiqui et al. (2001) 

Azoarcus sp  Sorghum Stein et al. (1997) 

Bacillus sp. Cucumber Stout et al. (2002) 

Bacillus pumilus SE 34 Tobacco Zhang et al. (2003) 

Streptomyces marcescens 90–116 Tobacco Zhang et al. (2003) 

Bacillus cereus Salvia miltiorrhiza Bunge Zhao et al. (2010) 

*PGPR reported either endophytes or isolated from rhizosphere of given plants. 
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